
The 1st IEEE International Symposium on Wireless Systems within the Conferences on Intelligent Data Acquisition and Advanced Computing Systems

20-21 September 2012, Offenburg, Germany

y

Simulation Environment (SE) for mobile Virtualized

Security Appliances (VSA)

Prof. Dr. Kai-Oliver Detken1, Alexander Oberle2, Nicolai Kuntze3, Prof. Dr. Evren Eren4
1 DECOIT GmbH, Fahrenheitstr. 9, D-28359 Bremen, detken@decoit.de, www.decoit.de

2,3 Fraunhofer SIT, D-64295 Darmstadt, alexander.oberle/nicolai.kuntze@sit.fraunhofer.de
4 University of Applied Sciences Dortmund, D-44227 Dortmund, evren.eren@fh-dortmund.de

The deployment of new security technologies in existing

network topologies requires exhaustive testing before usage to

avoid down time of productive systems. Nowadays, the required

testing is omitted in many cases due to the complexity of creating

test cases and experimental set ups. The VISA (Virtual IT Security

Architectures) project, funded by the German Federal Ministry of

Research, aims to provide a simulation environment for semi-

automated deployment experiments based on system models.

Building Virtualized Security Appliances (VSA) is one part of the

VISA project which offers the user the possibility to build and

deploy secured virtual machine(s) and services within the model to

improve it. Two of the developed VSAs are based on mobile

scenarios to establish secure connections from an Android

smartphone to an enterprise IT infrastructure. The approach of

VISA is to implement such complex security systems much more

easily within the basic configuration settings for small and

medium enterprises (SME).

Keywords: virtualization, virtual security appliances,

simulation, emulation, testing, deployment, mobile security.

I. INTRODUCTION

In small and medium enterprises (SME) IT infrastructures

have already become complex. Aside from the diversity

(desktop computers, laptops, servers, etc.), peripheral (i.e.

multi-functional printers) and functional network

components (routers, switches, etc.), the complexity is

growing as a result of different security mechanisms such as

firewalling, intrusion detection and prevention. Often the

effects of changes in infrastructures can be seen after

accomplishing the modifications. The integration of new

security components often requires new hardware and

network topology restructuring, without a clear idea of what

impact it will have.

Since SMEs can provide only limited personnel resources

and know-how for operative IT management, IT

management has to be easy. This can be enabled by means of

IT infrastructure virtualization. Therefore, the goal of VISA is

to simplify and support management of IT infrastructures,

especially security components, by using virtualization.

This support is based on two core technologies:

simulation and evaluation of IT infrastructures in virtual

realms, and realization of security applications as virtual

components, so-called virtual security appliances (VSAs).

The VISA framework facilitates tailor-made and simplified

usage of security components based on VSAs, which can be

directly integrated into an existing IT infrastructure. By

combining virtual and real infrastructure components this

approach will help SMEs to estimate costs of their IT and

enhance security.

II. SIMULATION COMPONENTS

The envisioned simulation system aims at testing system

functionality and availability after introducing new features

of a productive system. The VISA Simulation Environment

(VISA-SE) therefore offers the following components:

a. Topology Editor (TE)

b. Simulation Compiler (SC)

c. Simulation Environment (SE)

The topology editor (TE) offers the possibility to develop

the model of the productive system to be evaluated. As a

graphical tool it defines the topology and offers additional

functionalities such as starting measurements or configuring

properties for the simulation environment.

The simulation compiler (SC) translates the TE parameter

set to a simulation definition, e.g., the designed topology or

solely required measurements for the topology. Such a

simulation definition may include specific data sources for

automated experiments, definitions of virtual network

interfaces, configuration data for virtual images as well as

requests to monitor the simulation. A part of the simulation

definition serves as input for the OMF framework [1] which

is used by the VISA projects' scope for some of the

simulation environment deployments and services. The SC

passes the simulation definition to a controller to execute all

actions by the given simulation definition (may include

starting OMF). The controller delivers the results back to the

GUI. Note: This controller is defined to be part of the SC’s

definition.

The simulation environment (SE) executes the OMF

controlled simulation and allows the SC’s controller to

directly access the SE. Furthermore, The SE processes and

executes parts of the simulation definition and also offers

generic (OMF independent) scenarios. The simulation

facilitates measurements with respect to systems

functionality. Simulation uses virtual machine images.

The workflow between these three components starts at

the TE. Here, the user defines the simulation topology based

on a set of existing virtual machines connected with each

other. Within this topology it is possible to define specific

behaviour of components involved, e.g., for an e-mail server

an automated process can send e-mails to the simulated

server. As a result a simulation description is created

including all the information required to define an automated

simulation.

In the next step the simulation compiler translates this

simulation description into a specific simulation definition.

The description defines specific information about the actual

deployment of virtual machines on the simulation hardware,

their configuration and interconnectivity. In later steps,

virtual machine deployments in a simulation environment

may be further optimized, allowing the SME more complex

scenarios.

In the final step, based upon the simulation definition the

simulation is executed, comprising downloading and

configuring images, establishing the intended network

connections and finally executing the network and measuring

relevant operation data.

III. REQUIREMENTS

The respective VISA-SE requirements can be structured

according to the components presented in the introduction.

The VISA system will include the following components in

its system model:

a. Core functionality: These components are used to

model the IT system and incorporate systems such as e-

mail servers and clients.

b. Security functionality: One of VISA’s goals is to

evaluate security components with regard to their

impact on the productive IT system’s core functionality.

c. Network: All core and security components are

interconnected by networks.

d. Test data source: Data sources are required for core

and security components (might also include

penetration tests) to simulate automated actors.

Automated testing requires generator components (e-

mail data source that can be linked to an e-mail server).

The topology editor (TE) allows the definition of models

which represent productive environments. Productive IT

systems are composed of servers, clients, and network

connections. The TE represents the graphical user interface

(GUI) allowing the user to choose, place and connect

network components to set up a topology. VMs, defined

VSAs and their components/services have to be selectable

and combinable as single-operating instances. Test data

sources such as e-mail clients can be set by the TE, including

points for sources, measurements and penetration testing

within the network.

After the user has defined the simulation description it is

passed to the SC (validating and creating the final simulation

definition). The TE functionality also includes an abstract SE

visualization, for example in presenting measurement data

and results delivered by the SC. The simulation compiler

(SC) must be able to validate the topology definition given

by the simulation description against defined and secured

topology requirements. E.g., if a user defines three VSAs and

only two of them are behind a firewall, then the topology

rules defined to fulfil the security requirements shall perform

intelligent and automated checks whether the third VSA

might be a security risk. In a worst case scenario the SC has

to warn the TE and its user and offer solutions, if possible.

After the first check has been passed the SC must be able to

translate the simulation description into a simulation

definition. The SC’s controller then executes the simulation

definition on the SE. In return, the SC also prepares and

formats data that has been requested by a given simulation

definition and delivered by the SE to be finally passed back

to the TE for visualization.

In the simulation environment (SE) the different

technologies are executed to load VSA virtual machine

images, configure the network topology between the nodes,

trigger events and collect data. The SC’s controller executes

the tasks according to the given simulation definition.

The measurements derived from the individual simulation

need to proof system liveliness and identify possible impacts

on performance metrics such as throughput, latency, and

packet loss. Penetration tests and data sources address the

verification of security measures. VISA aims at automating

typical scenarios in the deployment of the security measures.

IV. ARCHITECTURE

In the following, the VISA-SE architecture with the

respective basic VISA simulation environment components

will be outlined. Figure 1 illustrates the architecture and

controlling of the VISA-SE. The topology editor represents

the GUI controlling within the simulation. The simulation

compiler is responsible for validating the network topology

against the defined simulation topology requirements (STR)

and for translating the simulation description into a

simulation definition, which is processed by the SC

controller. The controller has access to the SE mainly via

libvirt/KVM, OMF, and a set of tools defined as toolbox

available on the host server.

Figure 1. Topology editor and simulation compiler of the VISA

simulation environment.

The simulation environment comprises the complete

processing and deployment of the simulation components

with all VMs, connections, services and measurements. It is

controlled by the SC’s controller; note that the OMF can

control the toolbox as well if the service needed from the

toolbox is compatible with the OMF framework. A physical

test-bed, deployed and controlled by the OMF, with different

nodes and services (e.g. WLAN/Mesh, GSM) is available to

connect to the virtualized infrastructure.

V. IMPLEMENTATION STRATEGY

In this section the required functional building blocks of

the VISA-SE implementation will be discussed. The model

view controller (MVC) pattern might fit well here for the

implementation design and could be chosen to structure the

PHP-based implementation realizing the TE and SC/STR.

The topology editor (TE) is the basic interface to

configure, control and measure the virtualized network. To

illustrate what is expected, the GUI should have an editor

within a tool bar to design the infrastructure to be addressed.

This may be realized by a suitable script language library

such as JavaScript. A good example might be a modified

version of the WiringEditor non-fullscreen example given by

the JavaScript library Wirelt [2]. The TE should provide an

assistant (wizard) guiding the user through the VSA

configuration. This may be realized by php-virt-control [3],

for example, which needs to conform to the architecture

requirements using a combination of PHP and libvirt to

deploy virtual machines. Functionalities such as

measurements, test data sources and services should be

available on-demand in sub-interfaces to configure them onto

the topology or its components. These menus may appear

step by step. For example, after the topology has been

verified successfully against the STRs (via the SC), the

topology within the VSAs and all its components are shown

as previously selected. The user can set additional

measurement points which have been offered on fixed

topology locations. The user has to specify the form of

measurement. Then the simulation can be started by

triggering previously set timing intervals for the data sources

to generate traffic, while at the same time starting the

measurements and live network visualization. Once the run

has been completed or manually stopped, additional results

will be presented (e.g. log files) and a security validation

report is produced.

The TE will be realized by a web interface and will

comprise several menus and configuration possibilities. A

suitable API for generating a dynamic web interface may be

XML http request (XHR), which offers the opportunity to

request and load TE content asynchronously and can be

controlled with standard script languages such as PHP,

JavaScript (or Ajax).

The simulation compiler (SC) can be seen as a module (or

model) of the TE written in PHP; its main focus will be to

generate a simulation definition from the given user input,

execute spell verifications and also further translations, for

example into the experimental OEDL definition of OMF. It

must also verify security issues in the context of the given

topology specification by the simulation definition. Within

this model a controller executes commands directly on the

server, thus processing the simulation definition. Therefore,

the controller module is always called by the SC after

generating the simulation definition. The controller is also

responsible for pointing to the returned values which have

been executed (e.g. the URLs of gathered and stored data

files, etc.) so that the simulation compiler can process and

format it to be presented by the TE.

The deployment of the simulation should be realized by

PHP and libvirt at least until OMF has a built-in support for

instantiating VMs. OMF can already handle parts of the tasks

given by the simulation definition to deploy the simulation.

Obviously a modified version of the mentioned php-virt-

control library and its interface could realize the deployment

of the VMs/VSAs by integrating the library into the TE and

modifying or creating its web interfaces, meeting the

intended functionalities and VISA requirements.

In OMF, it is like defining every aspect of an experiment

in its "experiment description". This is a script written in

OEDL, its own experiment description language. There

could be a (web) frontend that allows the assignment of the

software components (e.g. select services such as FTP,

SMTP etc. from a list) and the network parameters

(connected to which bridge/switch, latency, loss, etc.),

resulting in a simulation definition in form of a file. Since

these files serve as input to OMF the simulation definition

may be attached to OEDL. It also supports network

emulation in OMF, meaning that the experiment can include

parameters such as network loss and delay. At the moment

OMF does not have built-in support for instantiating VMs,

but maybe this feature will be integrated in a future release.

For now, it can be written or generated as a separate OMF

experiment that sets up the VMs and their

connectivity/topology.

OMFs' built-in commands can configure an image

containing a (previously instantiated) Linux installation to

install packages and run scripts for configuring the services.

In the topology editor, the user can select certain

measurement points and assign measurement tools. The

following measurement and penetration testing tools may be

integrated and can thus be part of the toolbox: iperf, (h)ping,

nmap, mdk3 WLAN testing tool.

NICTA, the Australian partner in the VISA project, has

developed OML, a measurement library which may be a

useful tool to gather data. The OML library is linked against

an existing application (e.g. an e-mail server). Hooks are

introduced to the application code, which extract

measurement points streamed to an OML server. The

measured data are stored in an SQL database and can be

visualized on-the-fly in various forms using OMF.

VI. MOBILE VSAs

Mobile devices are increasingly used in companies and

integrated in corporate networks. These devices handle and

contain security relevant business data. Smartphones

operating systems such as iPhone OS, Android, Windows

Mobile, RIM OS, etc. achieve capabilities of conventional

PCs. Innumerable applications (apps) can be downloaded and

installed. Increasing complexity and at the same time higher

mobility and this ubiquitous connectivity enlarge the risk of

compromising the device with malware or targeted attacks

implying risks in terms of security, safety and availability for

IT infrastructures.

Therefore within the VISA project two mobile VSAs have

been defined in order to address improved securing for

smartphones, especially for Android OS:

a. VSA-SRA: The VSA Secure Remote Access allows

Android based mobile devices to access different IT

systems in a trustworthy manner, for example

applications spanning whole supply chains and

enterprise networks. By means of the Trusted

Computing (TC) technology the user device is checked

by login and password requests, while the device

hardware platform is analysed continuously.

b. VSA-MAC: The VSA Meta-data Access Control

additionally uses the IF-MAP protocol of the Trusted

Computing Group (TCG). The IF-MAP specification

currently defines a model for meta-data which

specifically addresses use-cases in the network security

domain. With the correlation of other meta-data, the

VSA is able to detect attacks which cannot usually

discovered by security systems.

In the following both VSA types are described in detail.

A. VSA-SRC

For the first VSA prototype the core element of the

platform is represented by the VPN gateway. Additionally, a

management server (e.g. RADIUS), a directory server (e.g.

LDAP), and a certification authority server is necessary. In

the first step, the user has to be identified accessing the VPN

gateway. All criteria are available on the directory server and

assign the user to different profiles and user groups.

Figure 2. Platform overview of the virtual security appliance – secure

remote Access (VSA-SRC).

In companies each user group has different security

policies for different access rights. The management system

synchronises in intervals continuously user information with

the directory server. That includes that user from the

directory server with VPN access rights, if they are not yet

available on the management server, will synchronize with

all user group membership automatically after one interval.

As an option a public certification authority (CA) can be

adapted. If a new user is created on the management server, a

certificate will be applied. In this case, the management

server functions as registration authority. The VPN gateway

has to be configured that all requested clients will be

authenticated via the management server. Therefore, the

gateway site does not need adaptations for a new user. This

will be done automatically by the communication with the

management server.

Figure 3. Architecture overview of TNC components. [9]

Next to the authentication of the user, the smartphone

platform (hardware and software configuration) is checked

according to the enterprise TNC requirements. TNC is a

specification of the Trusted Computing Group (TCG) [8].

With the TNC specification, the TCG developed an open and

vendor-neutral specification for the integrity check of

communication end-points, requesting access to a resource

(e.g. a network). The TCG’s TNC offers hardware support by

means of the trusted platform module (TPM), so that e.g. the

accuracy of the platform integrity information used in the

network access control process is guaranteed. As built in

desktop PCs and notebooks this integrated chip protects data

on a hardware level. Together with 802.1X, it guarantees the

TNC architecture, so that solely certificated (digitally signed)

application software may be used. Furthermore, this

technology uses an authorization token (e.g. a X.509

certificate), which is communicated together with the client

status information. These are being validated at the target

system against policy conformity. Access management relies

on client identity and system status.

After the establishment of a VPN connection, the network

access of the mobile device is limited to a quarantine zone.

Within this area, it is only possible to update software

components of the mobile device like anti-virus-software or

operating system patches. Access to other network areas of

an enterprise network is prohibited. Mobile device status

information is available by the access requestor (AR) on the

client-site. This entity includes the network requestor (as a

component of the VPN client), the TNC client (as an

interface between the network access requestor and plug-in

software), and the integrity measurement collector (describes

the plug-ins which allows different software products like

anti-virus software to communicate with TNC).

In detail, the following points will initiate for a mobile

device communication (also depicted in figure 2):

1) A VPN connection is established.

2) The management server (TNC server) initializes an

integrity check.

3) The mobile device (TNC client) collects integrity

measurements (IM) information using the local

integrity measurement clients (IMC) on the mobile

device.

4) The management server (TNC server) forwards the

IM information for a check to the integrity

measurement verifier (IMV).

5) The integrity measurement verifier (IMV) checks

the IMs and sends the results with a

recommendation to the management server (TNC

server).

6) The management server (TNC server) takes access

decision und forwards this information to the VPN

gateway (PEP) and the mobile device (AR).

7) The VPN gateway (PEP) allows or does not allow

access to the network for the mobile device (AR).

Summarizing, the integration of the TPM allows a further

check of the software components on the mobile device. This

simplifies the detection of rootkits. Furthermore it is possible

to sign and encrypt messages with key material of the TPM,

affecting strong security check of the origin of the

information. As a conclusion, the TNC approach within the

VSA-SRC is a viable solution to raise the security level in

mobile networks. [5]

B. VSA-MAC

A further specification of the TCG is IF-MAP, a protocol

for exchanging meta-data in a client-server based

environment. Its main purpose is to achieve interoperability

for security related data exchange between components in a

network. So called MAP clients (MAPC) can publish new

meta-data to a MAP server (MAPS) and also search for meta-

data. They also can subscribe to specific meta-data and

provided with information when new meta-data is published.

The specification in its actual version 2.0 is separated into

several documents. The basic communication protocol based

on SOAP is specified in [6] and meta-data definitions for

network security are defined in [7]. Thus, new meta-data

definitions for non-security environment can be specified

without changing the specification for the underlying

protocol.

Based upon a threat analysis of another research project

[10] the following desirable key features for the VSA-MAC

solution have been identified:

a. Anomaly Detection: Consolidation of meta-data

created by different components in order to detect

outliers, indicating potential fraud activities.

Furthermore, smartphone driven attack patterns like

sensory malware approaches will be analysed.

b. Smartphone Awareness: Identification of

smartphones within the business environment,

enabling provisioning services that are specifically

tailored or to make policy decisions based upon the

smartphone type.

c. Single Sign Off: Immediate and global de-

provisioning of user accounts, ensuring that revoked

credentials cannot be used anymore within the

respective environment, no matter which service or

device is used.

d. Secure Evidence: Generation and integration of

evidence records proofing the integrity of meta-data

objects within the MAP server, thus increasing the

trustworthiness of the IF-MAP data set itself.

e. Identity Awareness: Making the user’s authenticated

identity available within a business environment

beyond the scope of the authenticating entity, thus

enabling use-cases like automated, identity-based

configuration of low-level security tools (e.g. packet

filters).

f. MalApp Detection: To defend against the spread of

potentially malicious applications and to limit the

amount of damage they can cause to the respective

business environment. This also implies the

development of new means in order to assess the

security state of a smartphone including its installed

applications and their respective privileges that go

beyond well-known approaches like Trusted

Computing or application certification.

g. Location-based Services: To provision services

based upon the smartphone’s location as well as to

support detection capabilities (anomaly and MalApp

detection components) by providing location

information on users and devices.

h. Real-time Enforcement: To enable immediate

reaction on identified anomalies by any component

that can help to mitigate the potential damage (like

flow controllers and net-work enforcement points).

In order to realize the key features mentioned above, the

VSA-MAC approach relies on the concept of trustworthy

meta-data correlation based upon the IF-MAP protocol. Any

security relevant data, whether it stems from a smartphone

or a service that is provided by the IT infrastructure (such as

an IDS, a firewall, or an AAA service), is expressed

according to a well-defined meta-data model. In addition, a

trust model has been defined that enables to reason about

the trustworthiness of the meta-data instances. Both the

meta-data model and the trust model are based on the IF-

MAP protocol.

The meta-data model is the fundamental basis for any

further analysis and correlation approaches that are

performed. The challenge is to encapsulate both smartphone

specific features as well as other meta-data of interest that

might be generated by arbitrary services in the network in a

common model. In addition, it is also necessary to model

the relationships between the relevant meta-data concepts.

Figure 4. Overview about the architecture of the detection engine.

As mentioned before, the current version of the meta-data

model of the VSA-MAC is based upon the IF-MAP meta-

data model. That includes the basic components as

identifiers, meta-data objects, and links. However,

smartphone specific features are currently not part of the IF-

MAP protocol. In order to realize the described key features,

it is necessary to name smartphone features of interest and

to integrate those features into the IF-MAP protocol.

The extended meta-data graph forms the basis for any

further correlation approaches. Those approaches can now

benefit from both, the ability to consider network generated

meta-data and smartphone specific meta-data, in addition to

the trust tokens that vouch for the trustworthiness of the

participating entities.

The currently correlation approaches, which the VSA-

MAC used are feasible and perform best for the desired key

features. The current candidates include rule- and case-

based reasoning, neuronal networks, and dependency

graphs. But, an evaluation of these approaches is subject of

the future work.

By the use of the detection engine component, pattern

and anomaly detection is possible for the VSA-MAC

environment, based on real-time collected meta-data. If the

detection engine recognizes a pattern such as a signature or

an unregistered app, an event will be sent to the MAP

server. This event can be analysed by other MAP clients,

which can react (e.g. with a real-time enforcement)

according to their policy definitions, if necessary. The

detection engine works as MAP client and is able to get any

subscriptions from the MAP server directly.

The recognition of anomalies implies a higher

complexity. First of all, the normal behaviour has been

trained or defined by expert knowledge. For the recognition

the detection engine can be supported by many statistical

algorithms (average, median, clustering) and automatic

learning (neural networks). The evaluation of the different

algorithms will be one task of the next steps. [8]

VII. CONCLUSIONS

The VSA-SRA consists of several security components

such as VPN gateway, TNC client/server, RADIUS server,

LDAP, and PKI server. The complete VSA-MAC consists of

several MAP clients like DECOIT IF-MAP-Client (Android,

iptables, Snort, Nagios), macmon, NCP, irondhcp, and

irondetect. Additionally the MAP server irond is a central

component, which is necessary to collect all MAP data. All

components work with each other and have to be configured.

The modelling framework developed in VISA allows IT

system security testing at the modular and overall system

level more easily and efficiently. This would be an important

step in the direction of end-to-end security, which is an

essential concept in IT landscapes.

A further advantage of comprehensive IT infrastructure

planning via the VISA framework is the tailor-made,

simplified use of security applications based on VSA.

Through the extensive emulation of IT infrastructures,

parameters relevant for businesses as well as VSA

integration points can already be identified transparently and

tested in use in the virtual realm. VSAs tested in this way can

then be implemented without changing the existing

infrastructure.

Acknowledgment

The project VISA [4] is funded by the Federal Ministry

of Education and Research (BMBF) of Germany. The project

started in August 2011 and will end in July 2013. The

authors would like to thank the BMBF for their support. We

also wish to express our gratitude and appreciation to all

VISA partners for their strong support and valuable

contributions during the various activities presented in this

paper.

References

[1] OMF Framework: http://omf.mytestbed.net

[2] Javascript Library Wirelt: http://neyric.github.com/wireit/

[3] Php-Virt-Control: http://php-virt-control.org/screenshots.html

[4] VISA Project: http://www.visa-project.de

[5] Detken, Fhom, Sethmann, and Diederich: Leveraging Trusted Network

Connect for Secure Connection of Mobile Devices to Corporate

Networks, Communications: Wireless in Developing Countries and

Networks of the Future, IFIP World Computer Congress (WCC) 2010,

Ana Pont, Guy Pujolle, S.V. Raghavan (Eds.), Springer-Verlag,

Brisbane, Australia 2010

[6] Trusted Computing Group, TNC IF MAP Binding for SOAP, Version

2.0, Revision 36, 2010.

[7] Trusted Computing Group, TNC IF-MAP Meta-data for Network

Security, Version 1, Revision 25, 2010.

[8] Bente, von Helden, Hellmann, Vieweg, Detken: ESUKOM:

Smartphone Security for Enterprise Networks, Securing Electronic

Business Processes, Vieweg+Teubner Verlag, Springer Fachmedien

Wiesbaden GmbH, 13. Information Security Solutions Europe

Conference (ISSE) conference in Prague, 22.-23. November,

Wiesbaden 2011

[9] Trusted Computing Group, TCG Specification Architecture Overview,

Revision 1.4, August 2007

[10] BMBF research project ESUKOM: http://www.esukom.de

