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The deployment of new security technologies in existing 

network topologies requires exhaustive testing before usage to 

avoid down time of productive systems. Nowadays, the required 

testing is omitted in many cases due to the complexity of creating 

test cases and experimental set ups. The VISA (Virtual IT Security 

Architectures) project, funded by the German Federal Ministry of 

Research, aims to provide a simulation environment for semi-

automated deployment experiments based on system models. 

Building Virtualized Security Appliances (VSA) is one part of the 

VISA project which offers the user the possibility to build and 

deploy secured virtual machine(s) and services within the model to 

improve it. Two of the developed VSAs are based on mobile 

scenarios to establish secure connections from an Android 

smartphone to an enterprise IT infrastructure. The approach of 

VISA is to implement such complex security systems much more 

easily within the basic configuration settings for small and 

medium enterprises (SME). 
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I. INTRODUCTION 

In small and medium enterprises (SME) IT infrastructures 

have already become complex. Aside from the diversity 

(desktop computers, laptops, servers, etc.), peripheral (i.e. 

multi-functional printers) and functional network 

components (routers, switches, etc.), the complexity is 

growing as a result of different security mechanisms such as 

firewalling, intrusion detection and prevention. Often the 

effects of changes in infrastructures can be seen after 

accomplishing the modifications. The integration of new 

security components often requires new hardware and 

network topology restructuring, without a clear idea of what 

impact it will have. 

Since SMEs can provide only limited personnel resources 

and know-how for operative IT management, IT 

management has to be easy. This can be enabled by means of 

IT infrastructure virtualization. Therefore, the goal of VISA is 

to simplify and support management of IT infrastructures, 

especially security components, by using virtualization.  

This support is based on two core technologies: 

simulation and evaluation of IT infrastructures in virtual 

realms, and realization of security applications as virtual 

components, so-called virtual security appliances (VSAs). 

The VISA framework facilitates tailor-made and simplified 

usage of security components based on VSAs, which can be 

directly integrated into an existing IT infrastructure. By 

combining virtual and real infrastructure components this 

approach will help SMEs to estimate costs of their IT and 

enhance security. 

II. SIMULATION COMPONENTS 

The envisioned simulation system aims at testing system 

functionality and availability after introducing new features 

of a productive system. The VISA Simulation Environment 

(VISA-SE) therefore offers the following components: 

a. Topology Editor (TE) 

b. Simulation Compiler (SC) 

c. Simulation Environment (SE) 

The topology editor (TE) offers the possibility to develop 

the model of the productive system to be evaluated. As a 

graphical tool it defines the topology and offers additional 

functionalities such as starting measurements or configuring 

properties for the simulation environment. 

The simulation compiler (SC) translates the TE parameter 

set to a simulation definition, e.g., the designed topology or 

solely required measurements for the topology. Such a 

simulation definition may include specific data sources for 

automated experiments, definitions of virtual network 

interfaces, configuration data for virtual images as well as 

requests to monitor the simulation. A part of the simulation 

definition serves as input for the OMF framework [1] which 

is used by the VISA projects' scope for some of the 

simulation environment deployments and services. The SC 

passes the simulation definition to a controller to execute all 

actions by the given simulation definition (may include 

starting OMF). The controller delivers the results back to the 

GUI. Note: This controller is defined to be part of the SC’s 

definition.  

The simulation environment (SE) executes the OMF 

controlled simulation and allows the SC’s controller to 

directly access the SE. Furthermore, The SE processes and 

executes parts of the simulation definition and also offers 

generic (OMF independent) scenarios. The simulation 

facilitates measurements with respect to systems 

functionality. Simulation uses virtual machine images. 

The workflow between these three components starts at 

the TE. Here, the user defines the simulation topology based 

on a set of existing virtual machines connected with each 



other. Within this topology it is possible to define specific 

behaviour of components involved, e.g., for an e-mail server 

an automated process can send e-mails to the simulated 

server. As a result a simulation description is created 

including all the information required to define an automated 

simulation. 

In the next step the simulation compiler translates this 

simulation description into a specific simulation definition. 

The description defines specific information about the actual 

deployment of virtual machines on the simulation hardware, 

their configuration and interconnectivity. In later steps, 

virtual machine deployments in a simulation environment 

may be further optimized, allowing the SME more complex 

scenarios. 

In the final step, based upon the simulation definition the 

simulation is executed, comprising downloading and 

configuring images, establishing the intended network 

connections and finally executing the network and measuring 

relevant operation data. 

III. REQUIREMENTS 

The respective VISA-SE requirements can be structured 

according to the components presented in the introduction. 

The VISA system will include the following components in 

its system model: 

a. Core functionality: These components are used to 

model the IT system and incorporate systems such as e-

mail servers and clients. 

b. Security functionality: One of VISA’s goals is to 

evaluate security components with regard to their 

impact on the productive IT system’s core functionality. 

c. Network: All core and security components are 

interconnected by networks.  

d. Test data source: Data sources are required for core 

and security components (might also include 

penetration tests) to simulate automated actors. 

Automated testing requires generator components (e-

mail data source that can be linked to an e-mail server). 

The topology editor (TE) allows the definition of models 

which represent productive environments. Productive IT 

systems are composed of servers, clients, and network 

connections. The TE represents the graphical user interface 

(GUI) allowing the user to choose, place and connect 

network components to set up a topology. VMs, defined 

VSAs and their components/services have to be selectable 

and combinable as single-operating instances. Test data 

sources such as e-mail clients can be set by the TE, including 

points for sources, measurements and penetration testing 

within the network.  

After the user has defined the simulation description it is 

passed to the SC (validating and creating the final simulation 

definition). The TE functionality also includes an abstract SE 

visualization, for example in presenting measurement data 

and results delivered by the SC. The simulation compiler 

(SC) must be able to validate the topology definition given 

by the simulation description against defined and secured 

topology requirements. E.g., if a user defines three VSAs and 

only two of them are behind a firewall, then the topology 

rules defined to fulfil the security requirements shall perform 

intelligent and automated checks whether the third VSA 

might be a security risk. In a worst case scenario the SC has 

to warn the TE and its user and offer solutions, if possible. 

After the first check has been passed the SC must be able to 

translate the simulation description into a simulation 

definition. The SC’s controller then executes the simulation 

definition on the SE. In return, the SC also prepares and 

formats data that has been requested by a given simulation 

definition and delivered by the SE to be finally passed back 

to the TE for visualization. 

In the simulation environment (SE) the different 

technologies are executed to load VSA virtual machine 

images, configure the network topology between the nodes, 

trigger events and collect data. The SC’s controller executes 

the tasks according to the given simulation definition.  

The measurements derived from the individual simulation 

need to proof system liveliness and identify possible impacts 

on performance metrics such as throughput, latency, and 

packet loss. Penetration tests and data sources address the 

verification of security measures. VISA aims at automating 

typical scenarios in the deployment of the security measures. 

IV. ARCHITECTURE 

In the following, the VISA-SE architecture with the 

respective basic VISA simulation environment components 

will be outlined. Figure 1 illustrates the architecture and 

controlling of the VISA-SE. The topology editor represents 

the GUI controlling within the simulation. The simulation 

compiler is responsible for validating the network topology 

against the defined simulation topology requirements (STR) 

and for translating the simulation description into a 

simulation definition, which is processed by the SC 

controller. The controller has access to the SE mainly via 

libvirt/KVM, OMF, and a set of tools defined as toolbox 

available on the host server. 

 
Figure 1.  Topology editor and simulation compiler of the VISA 

simulation environment. 



The simulation environment comprises the complete 

processing and deployment of the simulation components 

with all VMs, connections, services and measurements. It is 

controlled by the SC’s controller; note that the OMF can 

control the toolbox as well if the service needed from the 

toolbox is compatible with the OMF framework. A physical 

test-bed, deployed and controlled by the OMF, with different 

nodes and services (e.g. WLAN/Mesh, GSM) is available to 

connect to the virtualized infrastructure. 

V. IMPLEMENTATION STRATEGY 

In this section the required functional building blocks of 

the VISA-SE implementation will be discussed. The model 

view controller (MVC) pattern might fit well here for the 

implementation design and could be chosen to structure the 

PHP-based implementation realizing the TE and SC/STR. 

The topology editor (TE) is the basic interface to 

configure, control and measure the virtualized network. To 

illustrate what is expected, the GUI should have an editor 

within a tool bar to design the infrastructure to be addressed. 

This may be realized by a suitable script language library 

such as JavaScript. A good example might be a modified 

version of the WiringEditor non-fullscreen example given by 

the JavaScript library Wirelt [2]. The TE should provide an 

assistant (wizard) guiding the user through the VSA 

configuration. This may be realized by php-virt-control [3], 

for example, which needs to conform to the architecture 

requirements using a combination of PHP and libvirt to 

deploy virtual machines. Functionalities such as 

measurements, test data sources and services should be 

available on-demand in sub-interfaces to configure them onto 

the topology or its components. These menus may appear 

step by step. For example, after the topology has been 

verified successfully against the STRs (via the SC), the 

topology within the VSAs and all its components are shown 

as previously selected. The user can set additional 

measurement points which have been offered on fixed 

topology locations. The user has to specify the form of 

measurement. Then the simulation can be started by 

triggering previously set timing intervals for the data sources 

to generate traffic, while at the same time starting the 

measurements and live network visualization. Once the run 

has been completed or manually stopped, additional results 

will be presented (e.g. log files) and a security validation 

report is produced.  

The TE will be realized by a web interface and will 

comprise several menus and configuration possibilities. A 

suitable API for generating a dynamic web interface may be 

XML http request (XHR), which offers the opportunity to 

request and load TE content asynchronously and can be 

controlled with standard script languages such as PHP, 

JavaScript (or Ajax). 

The simulation compiler (SC) can be seen as a module (or 

model) of the TE written in PHP; its main focus will be to 

generate a simulation definition from the given user input, 

execute spell verifications and also further translations, for 

example into the experimental OEDL definition of OMF. It 

must also verify security issues in the context of the given 

topology specification by the simulation definition. Within 

this model a controller executes commands directly on the 

server, thus processing the simulation definition. Therefore, 

the controller module is always called by the SC after 

generating the simulation definition. The controller is also 

responsible for pointing to the returned values which have 

been executed (e.g. the URLs of gathered and stored data 

files, etc.) so that the simulation compiler can process and 

format it to be presented by the TE. 

The deployment of the simulation should be realized by 

PHP and libvirt at least until OMF has a built-in support for 

instantiating VMs. OMF can already handle parts of the tasks 

given by the simulation definition to deploy the simulation. 

Obviously a modified version of the mentioned php-virt-

control library and its interface could realize the deployment 

of the VMs/VSAs by integrating the library into the TE and 

modifying or creating its web interfaces, meeting the 

intended functionalities and VISA requirements. 

In OMF, it is like defining every aspect of an experiment 

in its "experiment description". This is a script written in 

OEDL, its own experiment description language. There 

could be a (web) frontend that allows the assignment of the 

software components (e.g. select services such as FTP, 

SMTP etc. from a list) and the network parameters 

(connected to which bridge/switch, latency, loss, etc.), 

resulting in a simulation definition in form of a file. Since 

these files serve as input to OMF the simulation definition 

may be attached to OEDL. It also supports network 

emulation in OMF, meaning that the experiment can include 

parameters such as network loss and delay. At the moment 

OMF does not have built-in support for instantiating VMs, 

but maybe this feature will be integrated in a future release. 

For now, it can be written or generated as a separate OMF 

experiment that sets up the VMs and their 

connectivity/topology. 

OMFs' built-in commands can configure an image 

containing a (previously instantiated) Linux installation to 

install packages and run scripts for configuring the services. 

In the topology editor, the user can select certain 

measurement points and assign measurement tools. The 

following measurement and penetration testing tools may be 

integrated and can thus be part of the toolbox: iperf, (h)ping, 

nmap, mdk3 WLAN testing tool. 

NICTA, the Australian partner in the VISA project, has 

developed OML, a measurement library which may be a 

useful tool to gather data. The OML library is linked against 

an existing application (e.g. an e-mail server). Hooks are 

introduced to the application code, which extract 

measurement points streamed to an OML server. The 

measured data are stored in an SQL database and can be 

visualized on-the-fly in various forms using OMF. 

VI. MOBILE VSAs 

Mobile devices are increasingly used in companies and 

integrated in corporate networks. These devices handle and 

contain security relevant business data. Smartphones 



operating systems such as iPhone OS, Android, Windows 

Mobile, RIM OS, etc. achieve capabilities of conventional 

PCs. Innumerable applications (apps) can be downloaded and 

installed. Increasing complexity and at the same time higher 

mobility and this ubiquitous connectivity enlarge the risk of 

compromising the device with malware or targeted attacks 

implying risks in terms of security, safety and availability for 

IT infrastructures.  

Therefore within the VISA project two mobile VSAs have 

been defined in order to address improved securing for 

smartphones, especially for Android OS: 

a. VSA-SRA: The VSA Secure Remote Access allows 

Android based mobile devices to access different IT 

systems in a trustworthy manner, for example 

applications spanning whole supply chains and 

enterprise networks. By means of the Trusted 

Computing (TC) technology the user device is checked 

by login and password requests, while the device 

hardware platform is analysed continuously.    

b. VSA-MAC: The VSA Meta-data Access Control 

additionally uses the IF-MAP protocol of the Trusted 

Computing Group (TCG). The IF-MAP specification 

currently defines a model for meta-data which 

specifically addresses use-cases in the network security 

domain. With the correlation of other meta-data, the 

VSA is able to detect attacks which cannot usually 

discovered by security systems.  

In the following both VSA types are described in detail. 

A. VSA-SRC 

For the first VSA prototype the core element of the 

platform is represented by the VPN gateway. Additionally, a 

management server (e.g. RADIUS), a directory server (e.g. 

LDAP), and a certification authority server is necessary. In 

the first step, the user has to be identified accessing the VPN 

gateway. All criteria are available on the directory server and 

assign the user to different profiles and user groups. 

 
Figure 2.  Platform overview of the virtual security appliance – secure 

remote Access (VSA-SRC). 

In companies each user group has different security 

policies for different access rights. The management system 

synchronises in intervals continuously user information with 

the directory server. That includes that user from the 

directory server with VPN access rights, if they are not yet 

available on the management server, will synchronize with 

all user group membership automatically after one interval. 

As an option a public certification authority (CA) can be 

adapted. If a new user is created on the management server, a 

certificate will be applied. In this case, the management 

server functions as registration authority. The VPN gateway 

has to be configured that all requested clients will be 

authenticated via the management server. Therefore, the 

gateway site does not need adaptations for a new user. This 

will be done automatically by the communication with the 

management server.  

 
Figure 3.  Architecture overview of TNC components. [9] 

Next to the authentication of the user, the smartphone 

platform (hardware and software configuration) is checked 

according to the enterprise TNC requirements. TNC is a 

specification of the Trusted Computing Group (TCG) [8]. 

With the TNC specification, the TCG developed an open and 

vendor-neutral specification for the integrity check of 

communication end-points, requesting access to a resource 

(e.g. a network). The TCG’s TNC offers hardware support by 

means of the trusted platform module (TPM), so that e.g. the 

accuracy of the platform integrity information used in the 

network access control process is guaranteed. As built in 

desktop PCs and notebooks this integrated chip protects data 

on a hardware level. Together with 802.1X, it guarantees the 

TNC architecture, so that solely certificated (digitally signed) 

application software may be used. Furthermore, this 

technology uses an authorization token (e.g. a X.509 

certificate), which is communicated together with the client 

status information. These are being validated at the target 

system against policy conformity. Access management relies 

on client identity and system status.  

After the establishment of a VPN connection, the network 

access of the mobile device is limited to a quarantine zone. 

Within this area, it is only possible to update software 

components of the mobile device like anti-virus-software or 

operating system patches. Access to other network areas of 

an enterprise network is prohibited. Mobile device status 



information is available by the access requestor (AR) on the 

client-site. This entity includes the network requestor (as a 

component of the VPN client), the TNC client (as an 

interface between the network access requestor and plug-in 

software), and the integrity measurement collector (describes 

the plug-ins which allows different software products like 

anti-virus software to communicate with TNC). 

In detail, the following points will initiate for a mobile 

device communication (also depicted in figure 2):  

1) A VPN connection is established.  

2) The management server (TNC server) initializes an 

integrity check. 

3) The mobile device (TNC client) collects integrity 

measurements (IM) information using the local 

integrity measurement clients (IMC) on the mobile 

device.  

4) The management server (TNC server) forwards the 

IM information for a check to the integrity 

measurement verifier (IMV).  

5) The integrity measurement verifier (IMV) checks 

the IMs and sends the results with a 

recommendation to the management server (TNC 

server).  

6) The management server (TNC server) takes access 

decision und forwards this information to the VPN 

gateway (PEP) and the mobile device (AR).  

7) The VPN gateway (PEP) allows or does not allow 

access to the network for the mobile device (AR). 

 

Summarizing, the integration of the TPM allows a further 

check of the software components on the mobile device. This 

simplifies the detection of rootkits. Furthermore it is possible 

to sign and encrypt messages with key material of the TPM, 

affecting strong security check of the origin of the 

information. As a conclusion, the TNC approach within the 

VSA-SRC is a viable solution to raise the security level in 

mobile networks. [5] 

B. VSA-MAC 

A further specification of the TCG is IF-MAP, a protocol 

for exchanging meta-data in a client-server based 

environment. Its main purpose is to achieve interoperability 

for security related data exchange between components in a 

network. So called MAP clients (MAPC) can publish new 

meta-data to a MAP server (MAPS) and also search for meta-

data. They also can subscribe to specific meta-data and 

provided with information when new meta-data is published. 

The specification in its actual version 2.0 is separated into 

several documents. The basic communication protocol based 

on SOAP is specified in [6] and meta-data definitions for 

network security are defined in [7]. Thus, new meta-data 

definitions for non-security environment can be specified 

without changing the specification for the underlying 

protocol. 

Based upon a threat analysis of another research project 

[10] the following desirable key features for the VSA-MAC 

solution have been identified: 

a. Anomaly Detection: Consolidation of meta-data 

created by different components in order to detect 

outliers, indicating potential fraud activities. 

Furthermore, smartphone driven attack patterns like 

sensory malware approaches will be analysed. 

b. Smartphone Awareness: Identification of 

smartphones within the business environment, 

enabling provisioning services that are specifically 

tailored or to make policy decisions based upon the 

smartphone type. 

c. Single Sign Off: Immediate and global de-

provisioning of user accounts, ensuring that revoked 

credentials cannot be used anymore within the 

respective environment, no matter which service or 

device is used. 

d. Secure Evidence: Generation and integration of 

evidence records proofing the integrity of meta-data 

objects within the MAP server, thus increasing the 

trustworthiness of the IF-MAP data set itself. 

e. Identity Awareness: Making the user’s authenticated 

identity available within a business environment 

beyond the scope of the authenticating entity, thus 

enabling use-cases like automated, identity-based 

configuration of low-level security tools (e.g. packet 

filters). 

f. MalApp Detection: To defend against the spread of 

potentially malicious applications and to limit the 

amount of damage they can cause to the respective 

business environment. This also implies the 

development of new means in order to assess the 

security state of a smartphone including its installed 

applications and their respective privileges that go 

beyond well-known approaches like Trusted 

Computing or application certification. 

g. Location-based Services: To provision services 

based upon the smartphone’s location as well as to 

support detection capabilities (anomaly and MalApp 

detection components) by providing location 

information on users and devices. 

h. Real-time Enforcement: To enable immediate 

reaction on identified anomalies by any component 

that can help to mitigate the potential damage (like 

flow controllers and net-work enforcement points). 

 

In order to realize the key features mentioned above, the 

VSA-MAC approach relies on the concept of trustworthy 

meta-data correlation based upon the IF-MAP protocol. Any 

security relevant data, whether it stems from a smartphone 

or a service that is provided by the IT infrastructure (such as 

an IDS, a firewall, or an AAA service), is expressed 

according to a well-defined meta-data model. In addition, a 

trust model has been defined that enables to reason about 

the trustworthiness of the meta-data instances. Both the 

meta-data model and the trust model are based on the IF-

MAP protocol.  

The meta-data model is the fundamental basis for any 

further analysis and correlation approaches that are 



performed. The challenge is to encapsulate both smartphone 

specific features as well as other meta-data of interest that 

might be generated by arbitrary services in the network in a 

common model. In addition, it is also necessary to model 

the relationships between the relevant meta-data concepts. 

 
Figure 4.  Overview about the architecture of the detection engine. 

As mentioned before, the current version of the meta-data 

model of the VSA-MAC is based upon the IF-MAP meta-

data model. That includes the basic components as 

identifiers, meta-data objects, and links. However, 

smartphone specific features are currently not part of the IF-

MAP protocol. In order to realize the described key features, 

it is necessary to name smartphone features of interest and 

to integrate those features into the IF-MAP protocol. 

The extended meta-data graph forms the basis for any 

further correlation approaches. Those approaches can now 

benefit from both, the ability to consider network generated 

meta-data and smartphone specific meta-data, in addition to 

the trust tokens that vouch for the trustworthiness of the 

participating entities. 

The currently correlation approaches, which the VSA-

MAC used are feasible and perform best for the desired key 

features. The current candidates include rule- and case-

based reasoning, neuronal networks, and dependency 

graphs. But, an evaluation of these approaches is subject of 

the future work. 

By the use of the detection engine component, pattern 

and anomaly detection is possible for the VSA-MAC 

environment, based on real-time collected meta-data. If the 

detection engine recognizes a pattern such as a signature or 

an unregistered app, an event will be sent to the MAP 

server. This event can be analysed by other MAP clients, 

which can react (e.g. with a real-time enforcement) 

according to their policy definitions, if necessary. The 

detection engine works as MAP client and is able to get any 

subscriptions from the MAP server directly. 

The recognition of anomalies implies a higher 

complexity. First of all, the normal behaviour has been 

trained or defined by expert knowledge. For the recognition 

the detection engine can be supported by many statistical 

algorithms (average, median, clustering) and automatic 

learning (neural networks). The evaluation of the different 

algorithms will be one task of the next steps. [8] 

VII. CONCLUSIONS 

The VSA-SRA consists of several security components 

such as VPN gateway, TNC client/server, RADIUS server, 

LDAP, and PKI server. The complete VSA-MAC consists of 

several MAP clients like DECOIT IF-MAP-Client (Android, 

iptables, Snort, Nagios), macmon, NCP, irondhcp, and 

irondetect. Additionally the MAP server irond is a central 

component, which is necessary to collect all MAP data. All 

components work with each other and have to be configured.  

The modelling framework developed in VISA allows IT 

system security testing at the modular and overall system 

level more easily and efficiently. This would be an important 

step in the direction of end-to-end security, which is an 

essential concept in IT landscapes.  

A further advantage of comprehensive IT infrastructure 

planning via the VISA framework is the tailor-made, 

simplified use of security applications based on VSA. 

Through the extensive emulation of IT infrastructures, 

parameters relevant for businesses as well as VSA 

integration points can already be identified transparently and 

tested in use in the virtual realm. VSAs tested in this way can 

then be implemented without changing the existing 

infrastructure. 
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