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The deployment of new security technologies in existing 

network topologies requires exhaustive testing before usage to 

avoid down time of the production systems. Nowadays, the 

required testing is in many cases omitted due to the complexity 

of creating test cases and experimental set ups. The VISA 

(Virtual IT Security Architectures) project [1], funded by the 

German Federal Ministry of Research, aims to provide a 

simulation environment for semi-automated deployment of 

experiments based on system models. Building Virtualised 

Security Appliances (VSA) for enterprise networks is the most 

important part of the VISA project, which offers the user the 

possibility to build and deploy secured virtual machines and 

services within the model to improve it. The developed VSAs 

are based on mobile scenarios to establish secure connections 

from an Android smartphone to an enterprise IT 

infrastructure as well as a meta-data client/server system to 

establish a higher security level for existing infrastructures. 

The approach of VISA is therefore to implement such complex 

security systems easily within the basic environment of small 

and medium enterprises (SME). This paper is intended to 

describe the final results of the project, before the analysis 

phase has been started. 
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I. INTRODUCTION 

In small and medium enterprises (SME) IT 

infrastructures have already become ubiquitous. Aside 

from the various types of machines (desktop computers, 

laptops, servers, etc.), peripherals (i.e. multifunctional 

printers) and functional network components (routers, 

switches, etc.), the complexity is continuing to grow as a 
result of different security devices (firewalls, intrusion 

detection, etc.). The effects of changes to such 

infrastructures are often hard to predict and can only be 

observed after the changes have been implemented. An 

integration of new security components often requires the 

installation of new hardware and some network topology 

design changes, which may have to be implemented 

without a clear idea on what the effects may be on the 

business operation. 

Since SME usually only have limited human 

resources and know-how for operative IT management, 
their IT infrastructure must be simplified. This can be 

achieved through IT infrastructure virtualization. 

Therefore, the goal of VISA is to simplify and support the 

management of IT infrastructures, especially security 

components, by using virtualization technology. 

This support is based on two core technologies:  

a. Simulation and evaluation of IT infrastructures in 

virtual realms, and  

b. Realization of security applications as virtual 
components, so-called virtual security appliances 

(VSAs). 

Throughout the VISA framework, the tailor-made, 

simplified use of security applications based on VSAs 

will become feasible. By entirely emulating the IT 

infrastructure, all parameters relevant to the business as 

well as the VSAs’ integration points can be identified and 

their use can be tested in the virtual realm. Successful 

VSAs then can be put to use directly without making 

changes to the rest of the infrastructure. Combining the 

modelling and formal description of infrastructures as 
well as evaluating them in virtual realms by using various 

defined criteria will enable SME to estimate the costs and 

characteristics of each IT investment better and keep their 

security risks low. [2] 

II. SIMULATION COMPONENTS 

The envisioned simulation system aims to allow tests 

on system functionality and its availability after a specific 

new feature has been introduced into a specific model of 

a productive system. The VISA Simulation Environment 

(VISA-SE) therefore offers the following components: 

a. Topology Editor (TE) 

b. Simulation Compiler (SC) 
c. Simulation Environment (SE) 

The topology editor (TE) brings the possibility to 

newly create or change existing formal representations 

(models) of the productive system that is being evaluated. 

It is a graphical tool that allows the definition of IT assets 

and their interconnected topology. Additional 

functionalities such as starting measurement procedures 

or configuring asset properties in the simulation 

environment are provided. The formal representation 

processed by the TE is stored in the Interconnected-asset 

Ontology – IO [3], which is a part of the simulation 
compiler (SC).  



 

 
Figure 1.  Topology editor and simulation compiler of the VISA 

simulation environment. 

The IO tool-set is capable of acquiring a model from 

an existing productive system via agent-free automatic 

acquisition procedures, or it can be modelled manually 

via the TE. A model representing the current state of the 
infrastructure can then be modified according to 

simulation requirements (simulation description). IO is 

able to store different variants of an infrastructure domain 

to enable the evaluation of changes to the infrastructure 

via simulation. Multiple models of the same 

infrastructure domain can also be used as snapshots to 

visualize changes in the interconnected topology of 

productive IT-assets. While IO stores formal 

representations in OWL/XML format [4], TE and IO 

transfer models via the less complex RDF/XML format 

[5]. Both formats are based on triples and can be used to 
represent graph-like topologies. 

In general terms, the simulation compiler (SC) allows 

the translation of the formal representation stored in IO 

combined with an additional set of simulation parameters 

(simulation description) into a simulation definition. Such 

a simulation definition may include specifics on data 

sources for automated experiments, or configuration data 

for virtual images as well as just requests to monitor the 

simulation. A part of the simulation definition serves as 

input for the OMF framework [9] that is used by the 

VISA project scope for some of the simulation 

environment deployments and services. The SC passes 
the simulation definition to a controller to execute all 

actions by the given simulation definition (which may 

include starting OMF). The controller delivers the results 

back to the GUI. Note: This controller is defined to be 

part of the SC’s definition.  

The simulation environment (SE) allows the 

execution of an OMF-controlled simulation and also the 

SC’s controller direct access to SE, processing and 

executing parts of the simulation definition as well to 

offer more generic (OMF independent) scenarios. The 

simulation also allows measurements on the system’s 

functionality, deriving a verdict on whether the intended 

security impact has been achieved. Simulations are based 

upon virtual machine images. More on OMF can be 

found in section VI. 

The intended workflow between the three components 

starts with the TE. The user here defines or modifies the 

formal representation of the simulation topology. Based 

on a set of existing virtualised machines, additional IT-

assets can be added to the model of the productive 
infrastructure. Within the model represented in the TE it 

is also possible to define certain behaviours of the IT-

assets involved. For example, in the case of a mail server, 

a specific simulation description could define a data 

source with an automated process sending e-mails to the 

simulated server. 

 
Figure 2.  Workflow of VISA architecture. 

In the next step, the simulation compiler translates 

this simulation description into a specific simulation 

definition. The definition contains specific information 

about the actual deployment of virtual machines on the 

simulation hardware, the configuration of these virtual 

machines and their interconnectivity. In later steps, 

virtual machine deployments in a simulation environment 

may be further optimized, allowing for the incorporation 

of more complex scenarios. 

In the final step, the simulation will be started based 

upon the simulation definition. The simulation is 

comprised of the steps of downloading the images, 
configuring the images, establishing the intended network 



links and finally running the network and measuring 

relevant data on the operation [2]. Figure 2 describes the 

architecture workflow and the interaction between the 

topology editor (TE) and the Interconnected-asset 

Ontology (IO) tool. 

In the next chapters, the components topology editor 

(TE), the simulation compiler/environment, the handling 

of two VSA and the experiment and measurement 

conduction are described more in detail.  

III. TOPOLOGY EDITOR 

The topology editor (TE) provides the primary user 
interface (UI) via an http-based client/server architecture. 

Figure 3 presents the web interface that enables the user 

to delete, replace or add new IT assets or predefined 

VSAs in a topological layout. IT-assets are visualized as 

black boxes. 

 
Figure 3.  Web interface of the topology editor 

It is also possible to setup the network definitions 

manually. Therefore a "dummy" VM with a Linux 

operating system can be used to establish a realistic 

enterprise network. 

The following visual options within the TE are 

available for the "black boxes" after IT-assets have been 

added into the infrastructure via the TE: 

a. Hostname 

b. Width/height 
c. Number of network interfaces 

d. Location of the network interfaces on the 

visualized IT-asset box 

To store the network components, the TE uses a 

Resource Description Framework (RDF)-based data 

model. The RDF data model doesn’t have a class 

structure like an object-oriented programming language. 

Figure 4 shows the structure and which information is 

stored in this data model in a similar manner. 

The classes with marker "C" represent non-

anonymous resources. Their attributes are statements of 
the model. Classes with marker "E" represent a fixed 

value range for the literals. This data model is also used 

for the communication with the SC. 

For transmitting the data between SC and TE an 

additional protocol has been developed within the VISA 

project. The protocol is based on serialized objects and 

uses an SSL socket. All string values have been encoded 

as Base64 to prevent failures while parsing the serialized 

objects. The following additional instruction set has been 

implemented in the protocol: 

a. Get topology-list (get_topo_list) 

Arguments: None 

Data: Every available topology with its ID 

b. Get topology (get_topo) 

Arguments: topology-ID 

Data: The topology ID and the infrastructure data 

of the newest version as RDF/XML 
c. Write topology (write_topo) 

Arguments: Topology ID, the new infrastructure 

data as RDF/XML and an optional description 

Data: None 

d. Collect topology (collect) 

Arguments: Topology ID 

Data: None 

Collects the topology configured in the SC and 

stores it under the provided ID 

e. Replicate topology (replicate) 

Arguments: Topology ID 
Data: None 

f. Clean up replication environment (cleanup) 

Arguments: None 

Data: None 

g. Reset SC (reset) 

Arguments: None 

Data: None 

Calls ‘cleanup’ and drops all stored topologies 

h. Drop topology (drop) 

Arguments: Topology ID 

Data: None 

 
Figure 4.  UML model of the data structure 

The TE now supports adding complete VSAs to the 

topology by using templates. These templates consist of a 

RDF/XML file containing the infrastructure data of the 

VSA and an additional XML file for defining additional 



information, e.g. required connections to the existing 

topology. 

To add a new VSA, the user selects the template by 

using the web interface and defined the devices which 

will be connected to the corresponding VSA components. 

If the target device is a switch, the user may select a 

VLAN for the connection. Finally the infrastructure data 

of the VSA has to be imported into the topology and the 

defined connections will be established. 

Furthermore, it is possible to execute predefined 

network tests. For example: 

a. Availability tests (e.g. redundancy checks) 

b. Load tests (e.g. packet loss, incomplete packets) 

c. Stress tests (e.g. DDoS attacks) 

Tests are performed automatically by the cOntrol and 

Management Framework (OMF) [9]. Required 

measurement points and other information about the test 

cases are defined in the TE. After the information is 

transferred, the tests can be started. The results can be 

displayed using OMF utilities. 

In a future version of the topology editor it will be 

possible to create VMs on an OpenStack cloud directly 
without the use of the Interconnected-asset Ontology (IO) 

tool. 

IV. IO TOOL-SET 

The Interconnected-Asset Ontology (IO) tool-set 

aggregates heterogeneous infrastructure information and 

meta-data in an ontological representation with a high 

level of detail. This includes static IT-asset information, 

such as manually assigned address configuration, vendor 

IDs, serial numbers or software versions, and volatile 

information, such as dynamic address configuration, 

neighbourhood relationships or MVRP-state. In essence, 
all data that can be extracted from managed network 

components (e.g., network equipment or network 

endpoints) can be processed by the IO tool-set. For this 

task, IO is composed of four types of modules that 

provide interfaces for acquisition, storage, search and 

retrieval procedures. Information is acquired from 

producers of information via modules supporting 

protocols such as SSH, SNMP, IF-MAP or SOAP and is 

made available to consumers of information through 

customizable query modules supporting, e.g. SCAP-AI, 

IIOX (the Inter-IO-exchange protocol, utilizing RDF or 

OWL), CSV, or SQL. 
Figure 5 represents two corresponding data flows 

regarding the IO tool-set: 1) Acquisition of IT-asset 

information from productive IT-infrastructure and 

utilization of the resulting formal representation by the 

Simulation Compiler (SC). 2) Processing of a manually 

composed infrastructure topology saved and loaded by 

the Topology Editor (TE) via IIOX. IIOX functions as a 

platform independent exchange protocol that is based on 

RDF (optionally OWL if more complexity is required by 

consumers or producers of information). 

IV.  VIRTUAL SECURITY APPLIANCES 

A virtual security appliance (VSA) can be a single 

virtual machine (VM) or a combination of multiple VMs. 

A VSA is able to offer several services within IT 

infrastructures, especially for IT security. 

The VSA of VISA consists of virtual IT security 

modules and services. The goal is to improve IT security 

of a typical SME network topology. In this chapter, two 

VSA examples are described shortly: VSA-MAC (Virtual 

Security Appliance – Meta-data Access Control) and 
VSA-SRA (Virtual Security Appliance – Secure Remote 

Access). 

The VSA-MAC is based on the components IF-MAP 

server and IF-MAP clients for Android, Snort, iptables 

and Nagios. IF-MAP is an open and vendor-independent 

client/server protocol to exchange meta-data. The central 

component is the IF-MAP-server, which stores the 

collected meta-data from the clients and also provides the 

data for the clients. With the help of the collected meta-

data, anomalies can be detected easily through correlation 

of all information. [8] 

An important specification of the VSA-MAC is IF-
MAP [6], a protocol of the Trusted Computing Group 

(TCG) for exchanging meta-data in a client/server based 

environment. Its main purpose is to achieve 

interoperability for security-related data exchange 

between components in a network. So-called MAP clients 

(MAPC) can publish new meta-data to a MAP server 

(MAPS) and also search for meta-data. They can also 

subscribe to specific meta-data and provide notifications 

when new meta-data is published. 

The specification in its current version 2.0 is 

separated into several documents. The basic 
communication protocol based on SOAP is specified in 

[6], and meta-data definitions for network security are 

defined in [7]. Thus, new meta-data definitions for non-

security environments can be specified without changing 

the specification of the underlying protocol. 

 
Figure 5.  Data flows regarding the IO tool-set 



 The VSA-SRA allows a secure dial-in to a SME 

network via an Android-based mobile phone. The VSA 

contains an Android client, TNC server, and VPN 

gateway. The mobile phone connects to the SME-

network through the VPN gateway. But the mobile phone 
isn't trustworthy, because only the user credentials have 

been used and the software and hardware haven’t been 

checked. Therefore, to reach a higher security level it is 

necessary to send additional meta-data from the Android 

mobile phone as well. The metrics include the installed 

application, version number and policies that are applied 

to the mobile phone. The TNC server compares the 

metrics with those in its database. If all policies are 

fulfilled, the mobile phone is granted access to the 

internal resources, if not, it is rejected. [4] 

The VSA-SRC allows Android-based mobile devices 

to access different IT systems in a trustworthy manner, 
e.g. applications spanning whole supply chains and 

enterprise networks. By means of the Trusted Computing 

(TC) technology, the mobile device is checked through 

login and password requests of the user credentials, while 

the device soft- and hardware platform is analysed in the 

background continuously. 

In addition to the authentication of the user, the 

mobile phone platform (hard- and software configuration) 

is checked according to the enterprise Trusted Network 

Connect (TNC) requirements. TNC is also a specification 

of the Trusted Computing Group (TCG) [11]. With the 
TNC specification, the TCG developed an open and non 

vendor-specific description for the integrity check of 

communication endpoints requesting access to a resource 

(e.g. a network). The TCG’s TNC offers also hardware 

support by means of the trusted platform module (TPM), 

so that e.g. the accuracy of the platform integrity 

information used in the network access control process is 

guaranteed. Deployed inside desktop PCs and notebooks, 

this integrated chip protects data on a hardware level. 

Together with 802.1X, the TNC architecture setups a 

higher trustworthy platform, so that solely certified 
(digitally signed) application software may be used. 

Furthermore, this technology uses an authorization token 

(e.g. a X.509 certificate), which is transmitted together 

with the client status information. These are being 

validated at the target system for conforming to the 

policy. Access management relies on client identity and 

system status. 

Figure 6 shows both described VSAs in one topology. 

Both VSAs work together within one OpenStack server. 

Through this platform, a very flexible topology can be 

created and configured to handle different security 

requirements for SMEs. To set up such a complex 

architecture, automated configuration mechanisms are 

necessary (see next chapter).  

V.  AUTOMATIC CONFIGURATION 

The presented VSAs will be delivered into an existing 

IT infrastructure with a basic configuration. Therefore, an 

automatic configuration of the VSA components is 

necessary. However not all configuration parameters are 

available when the VSA will be established, such as:  

a. IP address of the default gateway 

b. IP address of the irond server 

c. IP address of the OpenVPN server 

d. Nagios server needs IP addresses of the 

monitored virtual machines 

Additionally, some services have to be started 

manually if the configuration changes. To avoid this, the 

VISA project uses the configuration management tool 

puppet (http://puppetlabs.com). This management tool 

based on Ruby and mainly developed to manage UNIX 

Systems. Puppet is able to manage different 

configurations of several computers. The state of a 

system can be described using templates, which include 

e.g. services, packets, files or command line instructions.  

Within VISA a client-/server model is used. This 

includes a puppet server on the OpenStack host and a 
puppet client on every virtual machine (VM) instantiated 

from the VSAs. To reserve an IP address range in real-

time, an additional script was written and is used on the 

OpenStack host. These IP addresses can be used for the 

puppet templates. Next, the new default gateways will be 

set and the IF-MAP clients and the server start. The 

gateway VM activates the IP forwarding and loads the 

iptables policies. Also the TNC server and client start up. 

A detailed workflow of the automatic configuration 

process is shown in figure 7.  

When a VSA has been started, the VMs try to reach 

the puppet server and ask it for the configuration. The 
VMs are identified by their fully qualified domain names 

(FQDN). If a configuration for a client exists, the puppet 

server transfers the necessary content (files, commands, 

etc.) to the client. The puppet client compares the existing 

configuration with the required one. If there is a 

difference, the new configuration is applied. The puppet 

clients are configured to ask the server for the 

configuration every five minutes. The communication 

between the puppet server and the clients is encrypted 

with SSL. 
 

 
Figure 6.  Topology of both VSAs 



VI. ORCHESTRATION & MEASUREMENT 

VISA uses the OMF Framework [9] to control the 

flow of experiments inside the VSA. Each VSA runs an 

OMF Resource Controller (RC), which allows a remote 

experimenter to execute instructions, e.g. starting 

programs or setting up measurements. The 

experimenter’s tool is the OMF Experiment Controller 

(EC), which steers the experiment through an experiment 
description file. The file format is OEDL (OMF 

Experiment Description Language [9]), which is an 

output of the VISA simulation compiler. 

All OMF components communicate via XMPP protocol. 

One benefit here is that OMF entities can be in different 

networks and behind NAT or firewalls, but can still 

communicate as long as they can all reach an XMPP 

server. 

To measure the impact of an experiment on the VMs and 

network components, VISA uses the OMF measurement 

library (OML) [10]. This C library can be linked to 

existing programs where measurement points have been 
defined in the code. OML transports these runtime 

measurements to an OML server, where data from all 

experiment entities is stored in a database. A library of 

existing applications, tutorials and language bindings are 

available on the OML website (http://oml.mytestbed.net). 

A common scenario in VISA is to deploy a couple of 

VSA that mimic a SME and then introduce an “attacker” 

VSA to the network. OMF is used to start up some 

applications (e.g. a mail server) and shortly after run the 

attack (e.g. a flood of spam mails to drown the server). 

Additionally, OMF can start some OML enabled 
measurement tools to monitor network throughput (e.g. 

iperf) and system load (e.g. nmetrics) during the attack. 

After analysing the data and securing the VSAs, the exact 

same attack can be repeated by OMF and measured by 

OML to check whether the security measures were 

successful. OMF & OML provide a range of live 

visualization options for the measurements, or they can 

simply be interpreted in raw format. 

VII. CONCLUSION 

The goal of VISA is to establish more security 

mechanisms in SME infrastructures. That also means to 

make the configuration itself more secure, which is a 

difficult task in general. Through the VISA project it is 

now possible to setup a virtual IT infrastructure with 

different security components and automatic 

configuration mechanisms without extensive knowledge 

about the individual VMs. Additionally, it is feasible to 
simulate the infrastructure and the configuration of the 

VMs and analyse the security afterwards (by using the 

visualization tools of OMF). Using the topology editor, 

an administrator can design and re-design the IT 

infrastructure in a simple-to-use graphical tool. Another 

feature is to analyse the existing infrastructure and 

simulate it on this virtual platform. Thus a complete 

simulation cycle can be established, which helps to 

institute more security in SME environments.  
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Figure 7.  Workflow of an automatic configuration 


