
The 7th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications

12-14 September 2013, Berlin, Germany

Design and implementation of Virtual Security

Appliances (VSA) for SME

Prof. Dr. Kai-Oliver Detken
1
, Marcel Jahnke

2
, Henk Birkholz

3
, Christoph Dwertmann

4

1,2 DECOIT GmbH, Fahrenheitstraße 9, D-28359 Bremen, www.decoit.de
3 Fraunhofer SIT, Rheinstraße 75, D-64295 Darmstadt, henk.birkholz@sit.fraunhofer.de, www.fraunhofer.de

4 National ICT Australia, Locked Bag 9013, Alexandria NSW 1435, Australia, www.nicta.com.au

The deployment of new security technologies in existing

network topologies requires exhaustive testing before usage to

avoid down time of the production systems. Nowadays, the

required testing is in many cases omitted due to the complexity

of creating test cases and experimental set ups. The VISA

(Virtual IT Security Architectures) project [1], funded by the

German Federal Ministry of Research, aims to provide a

simulation environment for semi-automated deployment of

experiments based on system models. Building Virtualised

Security Appliances (VSA) for enterprise networks is the most

important part of the VISA project, which offers the user the

possibility to build and deploy secured virtual machines and

services within the model to improve it. The developed VSAs

are based on mobile scenarios to establish secure connections

from an Android smartphone to an enterprise IT

infrastructure as well as a meta-data client/server system to

establish a higher security level for existing infrastructures.

The approach of VISA is therefore to implement such complex

security systems easily within the basic environment of small

and medium enterprises (SME). This paper is intended to

describe the final results of the project, before the analysis

phase has been started.

Keywords: virtualisation, security appliances, simulation,

emulation, testing, deployment, automatic configuration

I. INTRODUCTION

In small and medium enterprises (SME) IT

infrastructures have already become ubiquitous. Aside

from the various types of machines (desktop computers,

laptops, servers, etc.), peripherals (i.e. multifunctional

printers) and functional network components (routers,

switches, etc.), the complexity is continuing to grow as a
result of different security devices (firewalls, intrusion

detection, etc.). The effects of changes to such

infrastructures are often hard to predict and can only be

observed after the changes have been implemented. An

integration of new security components often requires the

installation of new hardware and some network topology

design changes, which may have to be implemented

without a clear idea on what the effects may be on the

business operation.

Since SME usually only have limited human

resources and know-how for operative IT management,
their IT infrastructure must be simplified. This can be

achieved through IT infrastructure virtualization.

Therefore, the goal of VISA is to simplify and support the

management of IT infrastructures, especially security

components, by using virtualization technology.

This support is based on two core technologies:

a. Simulation and evaluation of IT infrastructures in

virtual realms, and

b. Realization of security applications as virtual
components, so-called virtual security appliances

(VSAs).

Throughout the VISA framework, the tailor-made,

simplified use of security applications based on VSAs

will become feasible. By entirely emulating the IT

infrastructure, all parameters relevant to the business as

well as the VSAs’ integration points can be identified and

their use can be tested in the virtual realm. Successful

VSAs then can be put to use directly without making

changes to the rest of the infrastructure. Combining the

modelling and formal description of infrastructures as
well as evaluating them in virtual realms by using various

defined criteria will enable SME to estimate the costs and

characteristics of each IT investment better and keep their

security risks low. [2]

II. SIMULATION COMPONENTS

The envisioned simulation system aims to allow tests

on system functionality and its availability after a specific

new feature has been introduced into a specific model of

a productive system. The VISA Simulation Environment

(VISA-SE) therefore offers the following components:

a. Topology Editor (TE)

b. Simulation Compiler (SC)
c. Simulation Environment (SE)

The topology editor (TE) brings the possibility to

newly create or change existing formal representations

(models) of the productive system that is being evaluated.

It is a graphical tool that allows the definition of IT assets

and their interconnected topology. Additional

functionalities such as starting measurement procedures

or configuring asset properties in the simulation

environment are provided. The formal representation

processed by the TE is stored in the Interconnected-asset

Ontology – IO [3], which is a part of the simulation
compiler (SC).

Figure 1. Topology editor and simulation compiler of the VISA

simulation environment.

The IO tool-set is capable of acquiring a model from

an existing productive system via agent-free automatic

acquisition procedures, or it can be modelled manually

via the TE. A model representing the current state of the
infrastructure can then be modified according to

simulation requirements (simulation description). IO is

able to store different variants of an infrastructure domain

to enable the evaluation of changes to the infrastructure

via simulation. Multiple models of the same

infrastructure domain can also be used as snapshots to

visualize changes in the interconnected topology of

productive IT-assets. While IO stores formal

representations in OWL/XML format [4], TE and IO

transfer models via the less complex RDF/XML format

[5]. Both formats are based on triples and can be used to
represent graph-like topologies.

In general terms, the simulation compiler (SC) allows

the translation of the formal representation stored in IO

combined with an additional set of simulation parameters

(simulation description) into a simulation definition. Such

a simulation definition may include specifics on data

sources for automated experiments, or configuration data

for virtual images as well as just requests to monitor the

simulation. A part of the simulation definition serves as

input for the OMF framework [9] that is used by the

VISA project scope for some of the simulation

environment deployments and services. The SC passes
the simulation definition to a controller to execute all

actions by the given simulation definition (which may

include starting OMF). The controller delivers the results

back to the GUI. Note: This controller is defined to be

part of the SC’s definition.

The simulation environment (SE) allows the

execution of an OMF-controlled simulation and also the

SC’s controller direct access to SE, processing and

executing parts of the simulation definition as well to

offer more generic (OMF independent) scenarios. The

simulation also allows measurements on the system’s

functionality, deriving a verdict on whether the intended

security impact has been achieved. Simulations are based

upon virtual machine images. More on OMF can be

found in section VI.

The intended workflow between the three components

starts with the TE. The user here defines or modifies the

formal representation of the simulation topology. Based

on a set of existing virtualised machines, additional IT-

assets can be added to the model of the productive
infrastructure. Within the model represented in the TE it

is also possible to define certain behaviours of the IT-

assets involved. For example, in the case of a mail server,

a specific simulation description could define a data

source with an automated process sending e-mails to the

simulated server.

Figure 2. Workflow of VISA architecture.

In the next step, the simulation compiler translates

this simulation description into a specific simulation

definition. The definition contains specific information

about the actual deployment of virtual machines on the

simulation hardware, the configuration of these virtual

machines and their interconnectivity. In later steps,

virtual machine deployments in a simulation environment

may be further optimized, allowing for the incorporation

of more complex scenarios.

In the final step, the simulation will be started based

upon the simulation definition. The simulation is

comprised of the steps of downloading the images,
configuring the images, establishing the intended network

links and finally running the network and measuring

relevant data on the operation [2]. Figure 2 describes the

architecture workflow and the interaction between the

topology editor (TE) and the Interconnected-asset

Ontology (IO) tool.

In the next chapters, the components topology editor

(TE), the simulation compiler/environment, the handling

of two VSA and the experiment and measurement

conduction are described more in detail.

III. TOPOLOGY EDITOR

The topology editor (TE) provides the primary user
interface (UI) via an http-based client/server architecture.

Figure 3 presents the web interface that enables the user

to delete, replace or add new IT assets or predefined

VSAs in a topological layout. IT-assets are visualized as

black boxes.

Figure 3. Web interface of the topology editor

It is also possible to setup the network definitions

manually. Therefore a "dummy" VM with a Linux

operating system can be used to establish a realistic

enterprise network.

The following visual options within the TE are

available for the "black boxes" after IT-assets have been

added into the infrastructure via the TE:

a. Hostname

b. Width/height
c. Number of network interfaces

d. Location of the network interfaces on the

visualized IT-asset box

To store the network components, the TE uses a

Resource Description Framework (RDF)-based data

model. The RDF data model doesn’t have a class

structure like an object-oriented programming language.

Figure 4 shows the structure and which information is

stored in this data model in a similar manner.

The classes with marker "C" represent non-

anonymous resources. Their attributes are statements of
the model. Classes with marker "E" represent a fixed

value range for the literals. This data model is also used

for the communication with the SC.

For transmitting the data between SC and TE an

additional protocol has been developed within the VISA

project. The protocol is based on serialized objects and

uses an SSL socket. All string values have been encoded

as Base64 to prevent failures while parsing the serialized

objects. The following additional instruction set has been

implemented in the protocol:

a. Get topology-list (get_topo_list)

Arguments: None

Data: Every available topology with its ID

b. Get topology (get_topo)

Arguments: topology-ID

Data: The topology ID and the infrastructure data

of the newest version as RDF/XML
c. Write topology (write_topo)

Arguments: Topology ID, the new infrastructure

data as RDF/XML and an optional description

Data: None

d. Collect topology (collect)

Arguments: Topology ID

Data: None

Collects the topology configured in the SC and

stores it under the provided ID

e. Replicate topology (replicate)

Arguments: Topology ID
Data: None

f. Clean up replication environment (cleanup)

Arguments: None

Data: None

g. Reset SC (reset)

Arguments: None

Data: None

Calls ‘cleanup’ and drops all stored topologies

h. Drop topology (drop)

Arguments: Topology ID

Data: None

Figure 4. UML model of the data structure

The TE now supports adding complete VSAs to the

topology by using templates. These templates consist of a

RDF/XML file containing the infrastructure data of the

VSA and an additional XML file for defining additional

information, e.g. required connections to the existing

topology.

To add a new VSA, the user selects the template by

using the web interface and defined the devices which

will be connected to the corresponding VSA components.

If the target device is a switch, the user may select a

VLAN for the connection. Finally the infrastructure data

of the VSA has to be imported into the topology and the

defined connections will be established.

Furthermore, it is possible to execute predefined

network tests. For example:

a. Availability tests (e.g. redundancy checks)

b. Load tests (e.g. packet loss, incomplete packets)

c. Stress tests (e.g. DDoS attacks)

Tests are performed automatically by the cOntrol and

Management Framework (OMF) [9]. Required

measurement points and other information about the test

cases are defined in the TE. After the information is

transferred, the tests can be started. The results can be

displayed using OMF utilities.

In a future version of the topology editor it will be

possible to create VMs on an OpenStack cloud directly
without the use of the Interconnected-asset Ontology (IO)

tool.

IV. IO TOOL-SET

The Interconnected-Asset Ontology (IO) tool-set

aggregates heterogeneous infrastructure information and

meta-data in an ontological representation with a high

level of detail. This includes static IT-asset information,

such as manually assigned address configuration, vendor

IDs, serial numbers or software versions, and volatile

information, such as dynamic address configuration,

neighbourhood relationships or MVRP-state. In essence,
all data that can be extracted from managed network

components (e.g., network equipment or network

endpoints) can be processed by the IO tool-set. For this

task, IO is composed of four types of modules that

provide interfaces for acquisition, storage, search and

retrieval procedures. Information is acquired from

producers of information via modules supporting

protocols such as SSH, SNMP, IF-MAP or SOAP and is

made available to consumers of information through

customizable query modules supporting, e.g. SCAP-AI,

IIOX (the Inter-IO-exchange protocol, utilizing RDF or

OWL), CSV, or SQL.
Figure 5 represents two corresponding data flows

regarding the IO tool-set: 1) Acquisition of IT-asset

information from productive IT-infrastructure and

utilization of the resulting formal representation by the

Simulation Compiler (SC). 2) Processing of a manually

composed infrastructure topology saved and loaded by

the Topology Editor (TE) via IIOX. IIOX functions as a

platform independent exchange protocol that is based on

RDF (optionally OWL if more complexity is required by

consumers or producers of information).

IV. VIRTUAL SECURITY APPLIANCES

A virtual security appliance (VSA) can be a single

virtual machine (VM) or a combination of multiple VMs.

A VSA is able to offer several services within IT

infrastructures, especially for IT security.

The VSA of VISA consists of virtual IT security

modules and services. The goal is to improve IT security

of a typical SME network topology. In this chapter, two

VSA examples are described shortly: VSA-MAC (Virtual

Security Appliance – Meta-data Access Control) and
VSA-SRA (Virtual Security Appliance – Secure Remote

Access).

The VSA-MAC is based on the components IF-MAP

server and IF-MAP clients for Android, Snort, iptables

and Nagios. IF-MAP is an open and vendor-independent

client/server protocol to exchange meta-data. The central

component is the IF-MAP-server, which stores the

collected meta-data from the clients and also provides the

data for the clients. With the help of the collected meta-

data, anomalies can be detected easily through correlation

of all information. [8]

An important specification of the VSA-MAC is IF-
MAP [6], a protocol of the Trusted Computing Group

(TCG) for exchanging meta-data in a client/server based

environment. Its main purpose is to achieve

interoperability for security-related data exchange

between components in a network. So-called MAP clients

(MAPC) can publish new meta-data to a MAP server

(MAPS) and also search for meta-data. They can also

subscribe to specific meta-data and provide notifications

when new meta-data is published.

The specification in its current version 2.0 is

separated into several documents. The basic
communication protocol based on SOAP is specified in

[6], and meta-data definitions for network security are

defined in [7]. Thus, new meta-data definitions for non-

security environments can be specified without changing

the specification of the underlying protocol.

Figure 5. Data flows regarding the IO tool-set

 The VSA-SRA allows a secure dial-in to a SME

network via an Android-based mobile phone. The VSA

contains an Android client, TNC server, and VPN

gateway. The mobile phone connects to the SME-

network through the VPN gateway. But the mobile phone
isn't trustworthy, because only the user credentials have

been used and the software and hardware haven’t been

checked. Therefore, to reach a higher security level it is

necessary to send additional meta-data from the Android

mobile phone as well. The metrics include the installed

application, version number and policies that are applied

to the mobile phone. The TNC server compares the

metrics with those in its database. If all policies are

fulfilled, the mobile phone is granted access to the

internal resources, if not, it is rejected. [4]

The VSA-SRC allows Android-based mobile devices

to access different IT systems in a trustworthy manner,
e.g. applications spanning whole supply chains and

enterprise networks. By means of the Trusted Computing

(TC) technology, the mobile device is checked through

login and password requests of the user credentials, while

the device soft- and hardware platform is analysed in the

background continuously.

In addition to the authentication of the user, the

mobile phone platform (hard- and software configuration)

is checked according to the enterprise Trusted Network

Connect (TNC) requirements. TNC is also a specification

of the Trusted Computing Group (TCG) [11]. With the
TNC specification, the TCG developed an open and non

vendor-specific description for the integrity check of

communication endpoints requesting access to a resource

(e.g. a network). The TCG’s TNC offers also hardware

support by means of the trusted platform module (TPM),

so that e.g. the accuracy of the platform integrity

information used in the network access control process is

guaranteed. Deployed inside desktop PCs and notebooks,

this integrated chip protects data on a hardware level.

Together with 802.1X, the TNC architecture setups a

higher trustworthy platform, so that solely certified
(digitally signed) application software may be used.

Furthermore, this technology uses an authorization token

(e.g. a X.509 certificate), which is transmitted together

with the client status information. These are being

validated at the target system for conforming to the

policy. Access management relies on client identity and

system status.

Figure 6 shows both described VSAs in one topology.

Both VSAs work together within one OpenStack server.

Through this platform, a very flexible topology can be

created and configured to handle different security

requirements for SMEs. To set up such a complex

architecture, automated configuration mechanisms are

necessary (see next chapter).

V. AUTOMATIC CONFIGURATION

The presented VSAs will be delivered into an existing

IT infrastructure with a basic configuration. Therefore, an

automatic configuration of the VSA components is

necessary. However not all configuration parameters are

available when the VSA will be established, such as:

a. IP address of the default gateway

b. IP address of the irond server

c. IP address of the OpenVPN server

d. Nagios server needs IP addresses of the

monitored virtual machines

Additionally, some services have to be started

manually if the configuration changes. To avoid this, the

VISA project uses the configuration management tool

puppet (http://puppetlabs.com). This management tool

based on Ruby and mainly developed to manage UNIX

Systems. Puppet is able to manage different

configurations of several computers. The state of a

system can be described using templates, which include

e.g. services, packets, files or command line instructions.

Within VISA a client-/server model is used. This

includes a puppet server on the OpenStack host and a
puppet client on every virtual machine (VM) instantiated

from the VSAs. To reserve an IP address range in real-

time, an additional script was written and is used on the

OpenStack host. These IP addresses can be used for the

puppet templates. Next, the new default gateways will be

set and the IF-MAP clients and the server start. The

gateway VM activates the IP forwarding and loads the

iptables policies. Also the TNC server and client start up.

A detailed workflow of the automatic configuration

process is shown in figure 7.

When a VSA has been started, the VMs try to reach

the puppet server and ask it for the configuration. The
VMs are identified by their fully qualified domain names

(FQDN). If a configuration for a client exists, the puppet

server transfers the necessary content (files, commands,

etc.) to the client. The puppet client compares the existing

configuration with the required one. If there is a

difference, the new configuration is applied. The puppet

clients are configured to ask the server for the

configuration every five minutes. The communication

between the puppet server and the clients is encrypted

with SSL.

Figure 6. Topology of both VSAs

VI. ORCHESTRATION & MEASUREMENT

VISA uses the OMF Framework [9] to control the

flow of experiments inside the VSA. Each VSA runs an

OMF Resource Controller (RC), which allows a remote

experimenter to execute instructions, e.g. starting

programs or setting up measurements. The

experimenter’s tool is the OMF Experiment Controller

(EC), which steers the experiment through an experiment
description file. The file format is OEDL (OMF

Experiment Description Language [9]), which is an

output of the VISA simulation compiler.

All OMF components communicate via XMPP protocol.

One benefit here is that OMF entities can be in different

networks and behind NAT or firewalls, but can still

communicate as long as they can all reach an XMPP

server.

To measure the impact of an experiment on the VMs and

network components, VISA uses the OMF measurement

library (OML) [10]. This C library can be linked to

existing programs where measurement points have been
defined in the code. OML transports these runtime

measurements to an OML server, where data from all

experiment entities is stored in a database. A library of

existing applications, tutorials and language bindings are

available on the OML website (http://oml.mytestbed.net).

A common scenario in VISA is to deploy a couple of

VSA that mimic a SME and then introduce an “attacker”

VSA to the network. OMF is used to start up some

applications (e.g. a mail server) and shortly after run the

attack (e.g. a flood of spam mails to drown the server).

Additionally, OMF can start some OML enabled
measurement tools to monitor network throughput (e.g.

iperf) and system load (e.g. nmetrics) during the attack.

After analysing the data and securing the VSAs, the exact

same attack can be repeated by OMF and measured by

OML to check whether the security measures were

successful. OMF & OML provide a range of live

visualization options for the measurements, or they can

simply be interpreted in raw format.

VII. CONCLUSION

The goal of VISA is to establish more security

mechanisms in SME infrastructures. That also means to

make the configuration itself more secure, which is a

difficult task in general. Through the VISA project it is

now possible to setup a virtual IT infrastructure with

different security components and automatic

configuration mechanisms without extensive knowledge

about the individual VMs. Additionally, it is feasible to
simulate the infrastructure and the configuration of the

VMs and analyse the security afterwards (by using the

visualization tools of OMF). Using the topology editor,

an administrator can design and re-design the IT

infrastructure in a simple-to-use graphical tool. Another

feature is to analyse the existing infrastructure and

simulate it on this virtual platform. Thus a complete

simulation cycle can be established, which helps to

institute more security in SME environments.

ACKNOWLEDGEMENT

The VISA project [1] has been funded by the Federal
Ministry of Education and Research (BMBF) of

Germany. The project started in August 2011 and ended

in July 2013. The authors would like to thank the BMBF

for their support. We also wish to express our gratitude

and appreciation to all VISA partners for their strong

support and valuable contributions during the various

developments presented in this paper.

REFERENCES

[1] VISA Project: http://www.visa-project.de

[2] Detken, Oberle, Kuntze, Eren: Simulation Environment (SE) for

mobile Virtualized Security Appliances (VSA). 1st IEEE

International Symposium on Wireless Systems within the

Conferences on Intelligent Data Acquisition and Advanced

Computing Systems, 20.-21. September, University of Applied

Sciences Offenburg, Offenburg 2012

[3] H. Birkholz, I. Sieverdingbeck, K. Sohr, C. Bormann: IO: An

interconnected asset ontology in support of risk management

processes. ARES 2012 Security Ontology workshop

[4] W3C, “OWL 2 Web Ontology Language Document Overview,”

Tech.Rep., 2009

[5] D. Beckett and B. McBride, RDF/XML syntax specification

(revised). W3C recommendation, vol. 10, 2004.

[6] TCG Trusted Network Connect: TNC IF-MAP Binding for SOAP.

Specification V. 2.1, rev 15, Mai 2012.

[7] Trusted Computing Group, TNC IF-MAP Meta-data for Network

Security, Version 1, Revision 25, 2010.

[8] Detken, Eren, Steiner: Konfigurationsunterstützung bei der

Virtualisierung. D A CH Security 2012 ISBN: 978-3-00-039221-4

[9] Thierry Rakotoarivelo, Max Ott, Guillaume Jourjon, Ivan Seskar,

OMF: a control and management framework for networking

testbeds. ACM SIGOPS Operating Systems Review 43 (4), 54-59,

Jan. 2010

[10] Jolyon White, Guillaume Jourjon, Thierry Rakotoarivelo, and Max

Ott, Measurement architectures for network experiments with

disconnected mobile nodes. TridentCom 2010, May 2010

[11] Trusted Computing Group, TCG Specification Architecture

Overview, Revision 1.4, August 2007

Find IP address of the
VMs

Activation of IP forwarding
Setup iptables rules for forwarding

Routing for OpenVPN IP address
Start TNC server

Start TNC IF-MAP client

Which
VM?

gateway

Delete default route
Establish new route to

gateway

others

Which
VM?

Start irond
server

irond

Start OpenVPN
server

Start OpenVPN IF-
MAP client

OpenVPN

Start relevant IF-MAP
clients

Setup IP addresses of the
monitored VMs

Start Nagios IF-MAP client
nagios

Which
VM?

others

Figure 7. Workflow of an automatic configuration

